刘广青

时间:2019-12-17阅读次数:2007

刘广青教授  博士生导师

办公地址

北京市朝阳区北三环东路15号北京化工大学图书馆5层国际教育学院

电子邮箱

gqliu@mail.buct.edu.cn

联系电话

010-64433301

学术兼职

1. 工信部工业节能与绿色评价中心主任
2. 中国清洁炉灶联盟常务副秘书长
3. 国际区域清洁炉灶测试与知识中心主任


招生专业及研究方向

招生专业:
化学工程与技术、环境科学与工程
研究方向:
1. 生物质和有机废弃物厌氧清洁能源转化技术研究
2. 生物质与固体废弃物热解清洁能源转化技术研究
3. 生物质及洁净煤清洁炉灶设计开发及污染排放控制技术研究
4. 废水及污泥处理处置技术研究

个人经历

2013.07-至今 北京化工大学国际教育学院院长,北京化工大学生物质能源与环境工程研究中心执行主任,教授,博导
2008.11-2013.07 北京化工大学化学工程学院,副教授,北京化工大学人事处副处长
2006.07-2008.11 北京化工大学化学工程学院,讲师,硕士生导师,北京化工大学人才引进办公室主任助理
2005.03-2006.03 美国加州大学戴维斯分校 联合培养博士
2001.09-2006.06 中国农业大学 博士研究生

科研项目

1. 国家大气重点专项,“居民高效清洁采暖炉具研发及其应用示范”。
2. “863”国家高技术研究发展计划重点课题,“木质纤维原料高效预处理技术与工艺设备研究及示范)”。
3. 国家科技支撑计划,“北方城市生活垃圾干法厌氧消化及生物质燃气利用技术及示范-大型居民区生活垃圾生物质燃气制备与提纯天然气技术及示范”。
4. “863”国家高技术研究发展计划重点课题,“生物质高效热解催化定向制备燃气关键技术研究及工程示范”。
5. 国家科技支撑计划,“北方城市生活垃圾干法厌氧消化及生物质燃气利用技术及示范-餐厨废弃物干法发酵制备生物质燃气及并网发电技术及应用”。
6. 国家自然科学基金青年基金,“基于高效沼气发酵的高木质纤维素类废弃物生化预处理结构解析和耦合强化机制研究”。
7. 工信部纵向课题,“化工行业节能与绿色评价中心建设”。
8. 科技部纵向课题,“中美清洁炉灶战略发展过程管理”。
9. 企业合作课题,“微波加热生物质催化气化关键技术开发研究”。
10. 企业合作课题,“生物质高效热解催化定向制备清洁燃气关键技术研究。
11. 联合国基金会国际课题,“国际区域清洁炉灶测试与知识中心建设项目”。
12. 北京市优秀人才培养资助项目,“北京市餐厨垃圾沼气能源化集成技术研究”。
13. 世界银行国际项目,“中国清洁炉灶第二期平台建设项目”。
14. 联合国基金会国际项目,“Support for the China Alliance for Clean Stoves”。
15. 世界银行国际项目,“中国清洁炉灶发展策略研究分析”。
16. 联合国基金会国际项目,“中美清洁炉灶测试标准研究”。

学术成就

1. Enhanced methane production of vinegar residue by response surface methodology (RSM) [J]. AMB Express, 2017, 7: 89(1-8). (SCI收录)
2. Study on biomethane production and biodegradability of different leafy vegetables in anaerobic digestion [J]. AMB Express, 2017, 7: 27(1-9). (SCI收录)
3. Effect of organic loading rate on anaerobic digestion of food waste under mesophilic and thermophilic conditions[J]. Energy & Fuels, 2017, 31 (3), 2976-2984. (SCI收录)
4. Effect of lipase hydrolysis on biomethane production from swine slaughterhouse waste in China [J]. Energy & Fuels, 2016, 30(9): 7326-7330. (SCI收录)
5. Inhalation exposure and risk of polycyclic aromatic hydrocarbons (PAHs) among the rural population adopting wood gasifier stoves compared to different fuel-stove users [J]. Atmospheric Environment, 2016, 147: 485-491. (SCI收录)
6. Exposure and size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons among the population using different household fuels [J]. Environmental Pollution, 2016, 216: 935-942. (SCI收录)
7. Bio-energy conversion performance, biodegradability, and kinetic analysis of different fruit residues during discontinuous anaerobic digestion [J]. Waste Management, 2016, 52: 295-301. (SCI收录)
8. Influence of steam explosion pretreatment on the anaerobic digestion of vinegar residue [J]. Waste Management & Research, 2016, 34(7): 630-637. (SCI收录)
9. Pollutant Emissions from Improved Coal- and Wood-Fuelled Cookstoves in Rural Households [J]. Environmental Science & Technology, 2015, 49: 6590-6598. (SCI收录)
10. Flexible polyaniline / carbon nanotube nanocomposite film-based electronic gas sensors[J]. Sensors and actuators B-Chemical, 2017, 244: 47-53. (SCI收录)
11. Microwave pyrolysis of textile dyeing sludge in a continuously operated auger reactor[J]. Fuel Processing Technology, 2017, 166: 174-185. (SCI收录)
12. Microwave pyrolysis of textile dyeing sludge in a continuously operated auger reactor: Condensates and non-condensable gases[J]. Environmental Pollution, 2017, 228: 331-343. (SCI收录)
13. Microwave pyrolysis of textile dyeing sludge in a continuously operated auger reactor: Char characterization and analysis[J]. Journal of Hazardous Materials, 2017, 334: 112-120. (SCI收录)
14. Comparison of air pollutant emissions and household air quality in rural homes using improved wood and coal stoves[J]. Atmospheric Environment, 2017, 166: 215-223. (SCI收录)
15. The impact of household cooking and heating with solid fuels on ambient PM2.5 in peri-urban Beijing [J]. Atmospheric Environment, 2017, 165: 62-72. (SCI收录)
16. Effects of ammonia on anaerobic digestion of food waste: process performance and microbial community [J]. Energy & Fuels, 2016, 30(7): 5749-5757. (SCI收录)
17. Effect of sodium salt on anaerobic digestion of kitchen Waste [J]. Water Science & Technology, 2016, 73(8): 1865-1871. (SCI收录)
18. Phosphorous-nitrogen-codoped carbon materials derived from metal-organic frameworks as efficient electrocatalysts for oxygen reduction reactions [J]. European Journal of Inorganic Chemistry, 2016, 2100-2105. (SCI收录)
19. Biochar from microwave pyrolysis of biomass: A review [J]. Biomass & Bioenergy, 2016, 94: 228-244. (SCI收录)
20. Low-Cost Upgrading of Biomass Pyrolysis Vapors by Char Recycling in a Downstream Reactor [J]. Journal of Biobased Materials and Bioenergy, 2016, 10(2): 145-150. (SCI收录)
21. Biochar applications and modern techniques for characterization [J]. Clean Technologies and Environmental Policy, 2016, 18: 1457-1473. (SCI收录)
22. Catalytic pyrolysis of tar model compound with various bio-char catalysts to recycle char from biomass pyrolysis [J]. BioResources, 2016, 11(2): 3752-3768. (SCI收录)
23. Improve the anaerobic biodegradability by copretreatment of thermal alkali and steam explosion of lignocellulosic waste [J]. BioMed Research International, 2016, 2006: 1-10. (SCI收录)
24. Potential of black liquor of potassium hydroxide to pretreat corn stover for biomethane production [J]. BioResources, 2016, 11(2): 4550-4563. (SCI收录)
25. Influence of Nickel Impregnation on Behavior and Kinetic Characteristics of Oak Pyrolysis [J]. Journal of Biobased Materials and Bioenergy, 2016, 10(2): 137-144. (SCI收录)
26. Efficiencies and pollutant emissions from forced-draft biomass-pellet semi-gasifier stoves: Comparison of International and Chinese water boiling test protocols [J]. Energy for Sustainable Development, 2016, 32: 22–30. (SCI收录)
27. Pretreatment of corn stover for methane production with the combination of potassium hydroxide and calcium hydroxide, Energy & Fuels, 2015, 29(9): 5841-5846. (SCI收录)
28. Anaerobic digestion performance of vinegar residue in continuously stirred tank reactor [J]. Bioresource Technology, 2015, 186: 338-342. (SCI收录)
29. Pretreatment of wheat straw with potassium hydroxide for increasing enzymatic and microbial degradability [J]. Bioresource Technology, 2015, 185: 150-157. (SCI收录)
30. Enhancing methane production of corn stover through a novel way: sequent pretreatment of potassium hydroxide and steam explosion [J]. Bioresource Technology, 2015, 181: 345-350. (SCI收录)
31. Improving the bioenergy production from wheat straw with alkaline pretreatment [J]. Biosystems Engineering, 2015, 140: 59-66. (SCI收录)
32. A comparative study of enzymatic hydrolysis and thermal degradation of corn stover-understanding biomass pretreatment [J]. RSC Advances, 2015, 5: 36999-37005. (SCI收录)
33. Thermophilic solid-state anaerobic digestion of alkaline-pretreated corn stover [J]. Energy & Fuels, 2014, 28(6): 3759-3765. (SCI收录)
34. Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR) [J]. Bioresource Technology, 2014, 156: 342-347. (SCI收录)
35. Thermogravimetric analysis of lignocellulosic biomass with ionic liquid pretreatment [J]. Bioresource Technology, 2014, 153: 379-382. (SCI收录)
36. Understanding changes in cellulose crystalline structure of lignocelluosic biomass during ionic liquid pretreatment by XRD [J]. Bioresource Technology, 2014, 151: 402-405. (SCI收录)
37. Effects of moisture content in fuel on thermal performance and emission of biomass semi-gasified cookstove [J]. Energy for Sustainable Development, 2014, 21: 60-65. (SCI收录)
38. Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions [J]. Bioresource Technology, 2013, 149: 406-412. (SCI收录)
39. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates [J]. Bioresource Technology, 2013, 149: 565-569. (SCI收录)
40. Influence of particle size and alkaline pretreatment on the anareobic digestion of corn stover [J]. BioResources, 2013, 8(4): 5850-5860. (SCI收录)
41. Influence of inoculum source and pre-incubation on bio-methane potential of chicken manure and corn stover [J]. Applied Biochemistry and Biotechnology, 2013, 171(1): 117-127. (SCI收录)
42. Biochemical methane potential (BMP) of vinegar residue and the influence of feed to inoculum ratios on biogas production [J]. BioResources, 2013, 8(2): 2487-2498. (SCI收录)
43. Evaluating methane production from anaerobic mono- and co-digestion of kitchen waste, corn stover, and chicken manure [J]. Energy & Fuels, 2013, 27(4): 2085-2091. (SCI收录)
获奖:
1. “2017年度中国电力创新奖” 一等奖(完成人之一)。
2. 中国炉具行业杰出贡献奖,中国农村能源行业协会。
3. “基于高温木炭床的污泥高效热解研究”. 2015年第八届全国大学生节能减排社会实践与科技竞赛三等奖(国家级). 指导教师.
4. “汽爆预处理提升秸秆厌氧消化产能研究”. 2015年第八届全国大学生节能减排社会实践与科技竞赛三等奖(国家级). 指导教师.
5. “Clean Production of Biochar by Biomass Stoves”. 2014 International Student Contest on Environment and New Energy (ISCENE, 环境与新能源国际大学生竞赛) ,一等奖(国际竞赛). 指导教师.
6. “基于计算流体力学模拟的新型生物质炉灶的设计与优化”. 2014年第五届全国高校环保科技创意设计大赛银奖(省部级二等奖). 指导教师、最佳导师奖.
7. “新型生物质半气化产炭炉的设计与优化”. 2014年第七届全国大学生节能减排社会实践与科技竞赛二等奖(国家级). 指导教师.
8. “中国生物质炉灶的节能减排与碳交易潜力研究”. 2009年第二届全国大学生节能减排社会实践与科技竞赛一等奖(国家级). 指导教师.
9. “基于碳交易补贴的生物质炉灶和燃料可持续推广模式研究”. 2011年第二届全国高校环保科技创意设计大赛银奖. 指导教师.

论著专利

论著:
《Biomass Conversion Technology》,主编,科学出版社, 2015,北京.
参编《中国建筑节能年度发展报告》,2012,北京.
《生物质能源转化技术》,主编,化学工业出版社,2009,北京.
参编《固体废物工程实验》,化学工业出版社,2008,北京.
参编《有机固体废弃物管理与资源化技术》,国防工业出版社,2006,北京.
专利:
1. 一种碱联合预处理、黑液循环利用的纤维素类生物质厌氧消化工艺. ZL201310027025.6.
2. 一种循环利用催化剂热解气化农林废弃物的工艺. ZL201310101274.5.
3. 一种农作物秸秆与畜禽粪便联合固态发酵生产沼气的方法. ZL201310025678.0.
4. 一种生物质炉灶蒸汽减排装置, ZL201410230539.6.
5. 一种果蔬垃圾厌氧消化生产沼气的方法. ZL201210180850.5.
6. 一种两相多级厌氧发酵有机固体废弃物生产沼气的方法. ZL200810104975.3.
7. 两相厌氧循环水洗处理有机垃圾装置. ZL200620023158.1.
8. 好氧加温/厌氧发酵处理有机废弃物装置. ZL200620167412.5.
9. 一种同步实现有机废弃物处理及合成气提质的系统装置, ZL201620223633
10. 一种用于气体输送及物料搅拌的一体化装置及包括该装置的生物反应器, ZL201620237901.7.

讲授课程

《新能源国际交叉与前沿》

合作交流

与美国加州大学戴维斯分校、加拿大英属哥伦比亚大学、美国佐治亚大学、纽约州立大学ESF分校、瑞典皇家理工学院、荷兰代尔夫特大学、丹麦技术大学、希腊帕特雷大学等30余所国外高校有密切合作关系。

招生需求

1.热爱环境保护及生物质清洁能源研究领域。
2.具有良好的沟通理解能力以及英语听说读写能力。
3.具有创新能力,吃苦耐劳,有责任心及担当精神。
加入我们,一起为实现绿水青山的美丽中国努力。

所属团队或实验室网页介绍

https://mp.weixin.qq.com/s/Vel0ddT0_yrNRDpUOk9gMQ