徐仲均

时间:2019-12-17阅读次数:4377

徐仲均副教授  博士生导师

办公地址

北京市朝阳区北三环东路15号北京化工大学综合楼632

电子邮箱

xuzj@mail.buct.edu.cn, zhongjunxu@163.com

联系电话

13691177161

招生专业及研究方向

招生专业:环境科学与工程、资源与环境、化学工程与技术专业、材料与化工

研究方向:高级氧化、催化氧化、大气污染控制

个人经历

工作经历:
2012/01 - 至今,北京化工大学环境科学与工程系,副教授
2005/07-2011/12,北京化工大学环境科学与工程系,讲师
2003-2004,德国卡尔斯鲁厄研究中心气象气候与大气环境研究所,访问学者
教育背景:
2001/09 - 2005/07,中国科学院大气物理研究所,博士
1998/09 - 2001/07,西南大学,硕士
1994/09 - 1998/07,西南大学,学士

科研项目

1、国家科技部,重点研发计划,基于“大智物云”的焦化污染场地生物修复一体化智能装备研究,子课题负责人,206万元

2、国家科技部,重点研发计划,农药行业场地异味清除材料与控制技术,子课题负责人,61.34万元

3、中科院战略先导性专项A类,应对气候变化的碳收支认证及相关问题,子课题负责人,355万

4、国家自然科学基金,面上项目,植物-微生物协同净化气态有机污染物研究,项目负责人,70万元

5、国家自然科学基,金面上项目,盆栽植物净化室内空气甲醛机理研究,项目负责人,19万元

6、中央高校科研业务费专项资金项目,催化臭氧氧化挥发性有机物研究,项目负责人,15万元

7、国家自然科学基金,面上项目,缓释铁碳复合材料制备优化及其对土壤中多氯联苯(PCBs)的修复机制研究,参加,62万元

8、国家自然科学基金,面上项目,典型多环芳烃污染土壤的根际强化修复及机制,参加,20万元

9、中海油节能环保服务有限公司招标项目,碧海环保VOCs治理项目,参加,890万元

10、中央高校科研业务费专项资金项目,典型致霾工业废气净化的关键科学问题与技术研究,参加,364.8万元

11、横向委托项目,诺和诺德(中国)制药有限公司天津生产厂环境检测,项目负责人,26.5万元

12、横向委托项目,H2015006,基于电镜-能谱的大气颗粒物源解析方法的建立,项目负责人,19万元

13、横向委托项目,中原经济区大气细颗粒物来源及控制研究样品测试服务,项目负责人,11万元

14、横向委托项目,大气颗粒物样品中的OC、EC分析检测,项目负责人,13.5万元

学术成就

[1]Yang S, Liu Z*, Li J, Zhao S, Xu Z*, Gao W, Hu B, Wang Y. Insights into the chemistry of aerosol growth in Beijing: Implication of fine particle episode formation during wintertime. Chemosphere, 2021, 274: 129776.

[2]Yang S, Liu Z *, Clusius PS, Liu Y, Zou J, Yang Y, Zhao S, Zhang G, Xu Z *, Ma Z, Yang Y, Sun J, Pan Y, Ji D, Hu B, Yan C, Boy M, Kulmala M, Wang Y. Chemistry of new particle formation and growth events during wintertime in suburban area of Beijing: Insights from highly polluted atmosphere. Atmospheric Research, 2021, 255: 105553.

[3]Xu Z*, Qin Z, Zhang T, Chen X. Catalytic ozonation of ethyl acetate over mesoporous manganese oxides synthesized by a sonochemical method. Asia-Pacific Journal of Chemical Engineering, 2021, 16: e2605.

[4]Liu J, Liu Z*, Ma Z, Yang S, Yao D, Zhao S, Hu B, Tang G, Sun J, Cheng M, Xu Z*, Wang Y. Detailed budget analysis of HONO in Beijing, China- Implication on atmosphere oxidation capacity in polluted megacity. Atmospheric Environment, 2021, 244: 117957.

[5]Yao Z, Wang R, Zheng X*, Mei B, Zhou Z, Xie B, Dong H, Liu C, Han S, Xu Z, Butterbach-Bahl Klaus, Zhu J. Elevated atmospheric CO2 reduces yield-scaled N2O fluxes from subtropical rice systems: Six site-years field experiments. Global Change Biology, 2021, 27:327-339.

[6]Pang N, Gao J*, Zhao P, Wang Y, Xu Z *, Chai F. The impact of fireworks control on air quality in four Northern Chinese cities during the Spring Festival. Atmospheric Environment, 2021, 244: 117958.

[7]Pang N, Gao J*, Zhu G, Hui L, Zhao P, Xu Z*, Tang W, Chai F. Impact of clean air action on the PM2.5 pollution in Beijing, China: Insights gained from two heating seasons measurements. Chemosphere, 2021, 263: 127991.

[8]Pang N, Gao J*, Che F, Ma T, Liu S, Yang Y, Zhao P, Yuan J, Liu J, Xu Z*, Chai F. Cause of PM2.5 pollution during the 2016-2017 heating season in Beijing, Tianjin, and Langfang, China. Journal of Environmental Sciences, 2020, 95: 201-209.

[9]Shi S, Liu Z, Xu Z*, Yang S, Liu J, Wang Y. Evolution and meteorological causes of fine particulate explosive growth events in Beijing, China, from 2013 to 2017. Atmospheric and Oceanic Science Letters, 2020, 13(1): 55-62.

[10]Yuan Y, Qin Z, Xu Z*. SBA-15 Templated Mesoporous MnOx for Catalytic Ozonation of Toluene. Catalysis Letters, 2020, 150(2): 365-374.

[11]Li M, Liu Z*, Chen J, Huang X, Liu J, Xie Y, Hu B, Xu Z*, Zhang Y, Wang Y. Characteristics and source apportionment of metallic elements in PM2.5 at urban and suburban sites in Beijing: implication of emission reduction. Atmosphere, 2019, 10: 105.

[12]Xu Z*, He Y, Wang J. Toluene biofiltration as affected by ryegrass roots. Environmental Engineering and Management Journal, 2018, 17: 1923-1930.

[13]Xu Z*, Shan W, Qi Tao, Gao Jian, Characteristics of individual particles in Beijing before, during and after the 2014 APEC meeting, Atmospheric Research, 2018, 203: 254–260.

[14]Hou H, Xu Z*. Effect of benzene on formaldehyde removal by shoots of three indoor plant species. Environmental Engineering and Management Journal, 2015, 14: 2849-2854.

[15]Xu Z*, Wen T, Li X, Wang J, Wang Y. Characteristics of carbonaceous aerosols in Beijing based on two-year observation. Atmospheric Pollution Research, 2015, 6: 202-208.

[16]Xu Z*, Wu M, He Y. Toluene biofiltration enhanced by ryegrass. Bulletin of Environmental Contamination and Toxicology, 2013, 90: 646-649.

[17]Xu X, Luo X, Jiang S, Xu Z*. Biodegradation of dissolved organic carbon in soil extracts and leachates from a temperate forest stand and its relationship to ultraviolet absorbance. Chinese Science Bulletin, 2012, 57: 912-920.

[18]Xu Z*, Wang L, Hou H. Formaldehyde removal by potted plant-soil systems. Journal of Hazardous Materials, 2011, 192: 314-318.

[19]Xu Z*, Qing N, Wang J, Tong H. Formaldehyde biofiltration as affected by spider plant. Bioresource Technology, 2010, 101: 6930-6934.

[20]Xu Z*, Hou H. Formaldehyde removal from air by a biodegradation system. Bulletin of Environmental Contamination and Toxicology, 2010, 85: 28-31.

论著专利

[1]ZL202011616568.8, 一种污染场地异味控制剂及制备方法

[2]ZL201510377785.9, 一种用于催化臭氧氧化挥发性有机物的催化剂及制备方法

[3]ZL201010120292.4, 一种催化氧化法烟气脱硝催化剂及其制备方法

[4]ZL201720152658.3 一种VOCs净化一体机 

[5]ZL 201820354623.2, 一种常温催化深度净化VOCs 废气的系统

[6]ZL 201820354095.0, 一种VOCs 废气深度净化系统

[7]ZL201721083486.5, 用于净化低浓度挥发性有机物的常温催化反应装置

[8]ZL201721084044.2, 一种低阻力的挥发性有机物废气催化氧化反应装置 

[9]CN201810389568.5, 一种用于催化臭氧氧化低浓度挥发性有机物的催化剂

[10]CN201910872587.8, 一种用于催化臭氧氧化挥发性有机物的催化剂制备方法

[11]CN201910913585.9, 一种利用冷冻干燥法制备纳米二氧化锰催化剂的方法

[12]CN202111056682.4, 一种用于催化臭氧氧化含氯挥发性有机物的催化剂及其制备方法

[13]CN202111341794.4, 一种固体酸活化的二氧化氯缓释凝胶装置

讲授课程

1、本科生课程:环境化学,环境工程监测

2、研究生课程:高等大气污染控制工程、有机污染化学

合作交流

德国卡尔斯鲁厄研究中心气象气候与大气环境研究所、比利时根特大学

招生需求

踏实、认真,熟悉环境科学或化学化工相关学科知识