朱保宁

时间:2019-12-17阅读次数:5071

朱保宁副教授  硕士生导师、专业硕士生导师

职务

科学技术发展研究院 副院长

办公地址

综合楼60C、行政楼404

电子邮箱

bnzhu@mail.buct.edu.cn

联系电话

13718225641


招生专业及研究方向

招生专业:
化学工程与技术、环境科学与工程
研究方向:
多细胞厌氧消化体系代谢协同效应及过程强化:
厌氧消化是把生物质废物转变为绿色能源的好办法。这个复杂的底物-微生物共存体系是如何运转的?如何才能让这个过程的效率更高?我们探究厌氧体系微环境中微生物菌群的分工作用机制,调控产甲烷体系中水解酸化功能菌与甲烷菌群的协调适配能力,研究反应器过程参数对耦合体系稳定性及耐受性的影响规律,实现整个系统的高效稳定运行。
厌氧微生物代谢过程可视化表征与非稳态预警:
微生物如果暴饮暴食也会消化不良。是否有简便易行的方法能肉眼看到微观过程?能否在厌氧体系不稳定的初期就准确预测?我们揭示微生物菌群的结构和组成在纳米尺度下的时空变化规律,开发典型特征官能团的靶向示踪药剂和观测方法,建立厌氧体系非稳态代谢的动力学模型,实现微生物体系临界状态的宏观识别。
基于高级氧化的工业废水活化处理工艺及装备:
工业废水不仅造成恶性环境污染,而且很难用常规工艺处理。我们改造常规的污水处理工艺,利用矿产废物生产选择性催化剂,开发基于高级氧化的难降解有机物活化分解工艺和步骤控制技术,研制生化复合的高效连续式反应器系统,实现高浓度有机废水的达标处理。

个人经历

1994-1998 北京化工大学化学工程系 本科
2003-2006 北京化工大学环境工程系 硕士研究生
2006-2009 北京化工大学环境科学与工程系 博士研究生
2006-2008 美国加州大学戴维斯分校 联合培养博士生
2017-2017 加拿大阿尔伯塔大学 高级访问学者

科研项目

在研项目:
复杂底物人工共生多细胞体系可控构建与菌群协作机制(21838001),国家自然科学基金重点项目,2018-2021
石油化工类高校科技成果转化模式研究(jwgj201709),北京市教委共建项目,2017-2018
昌平区域餐厨废物处理中试方案工艺开发,横向项目,2017-2019
已验收项目:
城市生活垃圾生物制气设备“三化”体系和标准化设计平台建设(2010BAC67B05),国家科技支撑计划项目,2010-2013
城市生活垃圾筒仓式干法厌氧生物制气设备研发与示范工程(2010BAC67B03),国家科技支撑计划项目,2010-2013
有机化工精蒸馏残渣污染特征与污染风险控制研究(201309022),环境保护部公益专项,2013-2015
城市生物质垃圾厌氧消化生产车用生物燃气技术研究(2011DFA90800),国际科技合作项目,2011-2013
高固体厌氧消化关键工艺、装备研发与工程示范(2008AA062401),国家863计划项目,2009-2011
生物质垃圾厌氧消化产物高值利用技术、装备研发与工程示范(2008AA062402-2),国家863计划项目,2008-2011

学术成就

[1]Gikas P, Zhu B, Batistatos N I, et al. Evaluation of the rotary drum reactor process as pretreatment technology of municipal solid waste for thermophilic anaerobic digestion and biogas production[J]. Journal of Environmental Management, 2017, 216.
[2]Wang L, Zhu B N, Yuan H R, et al. Comparative investigations on pilot-scale anaerobic digestion of food waste at 30°C and 35°C.[J]. International Journal of Agricultural & Biological Engineering, 2016.
[3]Wang S, Peng L, Jiang Y, et al. Evaluation of A Novel Split-Feeding Anaerobic/Oxic Baffled Reactor (A/OBR) For Foodwaste Anaerobic Digestate: Performance, Modeling and Bacterial Community.[J]. Scientific Reports, 2016, 6:34640.
[4]Jaffar M, Pang Y, Yuan H, et al. Wheat straw pretreatment with KOH for enhancing biomethane production and fertilizer value in anaerobic digestion[J]. Chinese Journal of Chemical Engineering, 2016, 24(3):404-409.
[5]Ma Q, Shen F, Yuan H, et al. INVESTIGATION ON ANAEROBIC DIGESTION OF THE ORGANIC FRACTION OF MUNICIPAL SOLID WASTE (OFMSW) AFTER PRETREATMENT OF FAST AEROBIC FERMENTATION[J]. Fresenius Environmental Bulletin, 2015, 24(3):1039-1046.
[6]Chen X, Yuan H, Zou D, et al. Improving biomethane yield by controlling fermentation type of acidogenic phase in two-phase anaerobic co-digestion of food waste and rice straw[J]. Chemical Engineering Journal, 2015, 273:254-260.
[7]Hu Y, Pang Y Z, Yuan H R, et al. Promoting anaerobic biogasification of corn stover through biological pretreatment by liquid fraction of digestate (LFD).[J]. Bioresource Technology, 2015, 175:167-173.
[8]Zhou Q, Yuan H R, Liu Y P, et al. Using feature objects aided strategy to evaluate the biomethane production of food waste and corn stalk anaerobic co-digestion.[J]. Bioresource Technology, 2015, 179:611.
[9]Meng Y, Li S, Yuan H, et al. Evaluating biomethane production from anaerobic mono- and co-digestion of food waste and floatable oil (FO) skimmed from food waste[J]. Bioresource Technology, 2015, 185:7.
[10]Ying M, Sang L, Yuan H, et al. Effect of lipase addition on hydrolysis and biomethane production of Chinese food waste[J]. Bioresource Technology, 2015, 179:452-459.
[11]Ying M, Fei S, Yuan H, et al. Start-up and operation strategies on the liquefied food waste anaerobic digestion and a full-scale case application[J]. Bioprocess & Biosystems Engineering, 2014, 37(11):2333-2341.
[12]Wang L, Shen F, Yuan H, et al. Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: Lab-scale and pilot-scale studies[J]. Waste Management, 2014, 34(12):2627-2633.
[13]Hu Y, Shen F, Yuan H, et al. Influence of recirculation of liquid fraction of the digestate (LFD) on maize stover anaerobic digestion[J]. Biosystems Engineering, 2014, 127(1):189-196.
[14]Tian L, Shen F, Yuan H, et al. Reducing agitation energy-consumption by improving rheological properties of corn stover substrate in anaerobic digestion.[J]. Bioresource Technology, 2014, 168(3):86-91.
[15]Zhou Q, Shen F, Yuan H R, et al. Minimizing asynchroni** to improve the performances of anaerobic co-digestion of food waste and corn stover.[J]. Bioresource Technology, 2014, 166(166):31-36.
[16]Xue C, Pang Y, Zou D, et al. Optimizing Acidogenic Process for Achieving High Biomethane Yield from Anaerobic Co-Digestion of Food Waste and Rice Straw Using Response Surface Methodology[J]. China Biogas, 2014, 8(5):512-518(7).
[17]Yong X, Yuan H, Pang Y, et al. CORemoval from Biogas byWater Washing System[J]. Chinese Journal of Chemical Engineering, 2014, 22(8):950-953.
[18]Xiong J, Yuan H R, Wang K S, et al. Pilot scale study on two-phase anaerobic digestion performance of kitchen waste.[J]. Environmental Science & Technology, 2012, 35(3):25-29.
[19]Chen J J, Yuan H R, Wang K S, et al. Effect of mechanical agitation speed on the anaerobic digestion performance of rice straw.[J]. Renewable Energy Resources, 2012.
[20]Zhong Q L, Li X J, Li B, et al. Performances of two-phase SBMR-ASBR anaerobic digestion for biogas production of kitchen waste.[J]. Renewable Energy Resources, 2012:47-51.
[21]Liu Yanping, Chen Xue, Zhu Baoning,等. Formation and function of calcium stearate in anaerobic digestion of food waste餐厨垃圾厌氧消化中硬脂酸钙的形成及作用[J]. 环境工程学报, 2011, 05(12):2844-2848.
[22]Lü C, Yuan H, Wang K, et al. Anaerobic digestion performances of fruit and vegetable waste and kitchen waste[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011.
[23]Chen J, Li X, Liu Y, et al. Effect of mixing rates on anaerobic digestion performance of rice straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27:144-148.
[24]Ma S, Yuan H, Zhu B, et al. Effects of ammonization pretreatment on anaerobic digestion performance of rice straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(6):294-299.
[25]Song L, Zhu B N, Pang Y Z, et al. Effects of food-microogani** ratio on acidification of vegetable residue in batch mode.[J]. Renewable Energy Resources, 2011, 18(12):737-9.
[26]Zhu B, Xiujin L I, Liu Y, et al. Batch Anaerobic Digestion of Food Waste and Dairy Manure[C]// 2010中国可再生能源科技发展大会. 2010.
[27]Zhu B, Zhang R, Gikas P, et al. Biogas production from municipal solid wastes using an integrated rotary drum and anaerobic-phased solids digester system[J]. Bioresource Technology, 2010, 101(16):6374-6380.
[28]Zhu B, Gikas P, Zhang R, et al. Characteristics and biogas production potential of municipal solid wastes pretreated with a rotary drum reactor[J]. Bioresource Technology, 2009, 100(3):1122.
[29]Zhu B, Zhang R, Gikas P, et al. Integrated rotary drum and anaerobic phased solids digester system for high rate biogas production from municipal solid wastes[J]. Journal of Biotechnology, 2008, 136(4):S671-S672.
[30]Zhu B, Zhang R, Gikas P, et al. Integrated rotary drum and anaerobic phased solids digester system for high rate biogas production from municipal solid wastes[C]// 13th international biotechnology symposium and exhibition. 2008.
[31]Zhu B, Gikas P, Zhang R, et al. Evaluation of the Rotary Drum Reactor Process as Municipal Solid Waste Pretreatment Technology for Biomass Utilization[C]// 生物质能源技术国际会议. 2008.
[32]Luo Q, Li X, Zhu B, et al. Anaerobic biogasification of NaOH-treated corn stalk[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005.

讲授课程

环境工程制图,48学时,本科生(环境实验班)必修课
环保设备基础,32学时,本科生选修课

合作交流

与国家纳米中心、材料学院、生命科学与工程学院有联合研究和学生培养。