涂伟霞

时间:2019-12-17阅读次数:9545

涂伟霞教授  博士生导师、硕士生导师

  

办公地址:

  北京市朝阳区北三环东路15号北京化工大学化学工程楼A407-1 


  电子邮箱:

      tuwx@buct.edu.cn

  



招生专业及研究方向

招生专业:

化学工程与技术


研究方向:

纳米材料合成及纳米催化

个人经历

2004至今,北京化工大学,化学工程学院,教授

2012-2013,美国莱斯大学(Rice University),访问学者

2001-2003,日本东京工业大学(Tokyo Institute of Technology),日本学术振兴会JSPS研究员

2000-2001,法国昂热大学,(Angers University),博士后

1997-2000,中国科学院化学研究所,博士

1994-1997,兰州大学,硕士

1990-1994,兰州大学,学士

讲授课程

纳米微粒及化工医药应用技术(研究生课程)

化工原理(本科生课程)

文献检索与科技论文写作(本科生课程)

科研项目

国家自然科学基金项目,教育部留学回国人员科研启动基金项目,中央高校基本科研业务费项目,中国石油天然气集团公司石油科技中青年创新基金项目,企业横向项目。

学术成就

发表论文:

1.A ZIF-67-derived lamellar CoP@C cocatalyst for promoting photocatalytic hydrogen evolution from water, Int. J. Hydrogen Energy, 2023, 48: 4220-4229.

2.Construction of porous Ni2P cocatalyst and its promotion effect on photocatalytic H2 production reaction and CO2 reduction, Int. J. Hydrogen Energy, 2023, 48: 15105-15116.

3.Multistage modulation formation of hydrophilic-hydrophobic boron carbon nitride nanomaterials, Langmuir, 2023, 39: 5230-5237.

4.The synergistic promotion effect of in-situ formed metal cationic vacancies and interstitial metals on photocatalytic performance of WO3 in CO2 reduction, ChemCatChem, 2023, 15(12): e202300024.

5.Efficient reduction of hexavalent chromium over functionalized-graphene-supported Pd nanoparticles, J Nanopart. Res., 2023, 25: 143.

6.新时代交叉学科背景下的研究生教育探索与实践——以纳米微粒及化工医药应用技术课程为例, 化工高等教育, 2023, 40(5): 79-83.

7.Dynamic template-driven formation of NiS/CdS nanoparticles via metal organic frameworks for efficient hydrogen evolution, Int. J. Hydrogen Energy, 2022, 47: 8776-8785.

8.The controlled NiO nanoparticles for dynamic ion exchange formation of unique NiS/CdS composite for efficient photocatalytic H2 production, Mol. Catal., 2022, 525: 112375.

9.Efficient AuPd catalysts with layered material supporters for the reduction of 4 nitrophenol, J Nanopart. Res., 2022, 24: 108.

10.Synergistic promotion effect of ZnCoS solid solution and Co1-xS on photocatalytic hydrogen production of the CdS composite, Langmuir, 2021, 37: 12654-12662.

11.The effective and stable Cu-C@SiO2 catalyst for the syntheses of methanol and ethylene glycol via selective hydrogenation of ethylene carbonate, Int. J. Hydrogen Energy, 2021, 46: 17209-17220.

12.Promotion effect of rhenium on MoS2/ReS2@CdS nanostructures for photocatalytic hydrogen production, Mol. Catal., 2021, 516: 111939.

13.Lamellar flower-like porous MoS2 as an efficient cocatalyst to boost photocatalytic hydrogen evolution of CdS, Catal. Sci. Technol., 2021, 11: 1292-1297.

14.CeO2-Promoted Ni/SiO2 catalysts for carbon dioxide reforming of methane: The effect of introduction methodologies, Catal. Lett., 2021, 151: 2144-2152.

15.Hemispherical shell-thin lamellar WS2 porous structures composited with CdS photocatalysts for enhanced H2 evolution, Chem. Eng. J., 2020, 388: 124346.

16.Enhanced selective adsorption ability of Cu2O Nanoparticles for anionic dye by sulfur incorporation, SN Appl. Sci., 2020, 2: 1103.

17.ZnCo binary hydroxide nanostructures for the efficient removal of cationic dyes, J. Alloys Comp., 2019, 806: 823-832.

18.One-pot hydrothermal synthesis of CdS/NiS photocatalysts for high H2 evolution from water under visible light, Int. J. Hydrogen Energy, 2017, 42(16): 11199-11205.

19.An efficient exfoliation method to obtain graphitic carbon nitride nanosheets with superior visible-light photocatalytic activity, Int. J. Hydrogen Energy, 2017, 42(12): 7930-7937.

20.Enhanced photoluminescence property and broad color emission of ZnGa2O4 phosphor due to the synergistic role of Eu3+ and carbon dots, Opt. Mater., 2017, 72: 305-312.

21.A non-noble Metal MoS2-Cd0.5Zn0.5S photocatalyst with efficient activity for high H2 evolution under visible light irradiation, J. Mater. Chem. A, 2016, 4: 193-199.

22.Controlled synthesis of CdS nanoparticles and their surface loading with MoS2 for hydrogen evolution under visible light, Int. J. Hydrogen Energy, 2016, 41(33): 14758-14767.

23.An active copper-gold nanocatalyst for the direct partial oxidation of methane at low temperature, Inter. J. Oil Gas Coal Tech., 2016, 13(3): 277-291.

24.Synthesis of water-dispersible boron nitride nanoparticles, Eur. J. Inorg. Chem., 2014, 19: 3010-3015.

25.Synthesis of uniform ZnGa2O4 nanoparticles with high photocatalytic activity, J. Alloys Comp., 2014, 616: 461-467.

26.Effect of poly(N-vinyl-2-pyrrolidone) on structure and catalytic activity of platinum/ruthenium bimetallic nanoclusters catalysts, Chinese J. Inorg. Chem., 2014, 30(9): 2197-2204.

27.膨胀石墨负载钯纳米颗粒催化六价铬还原反应,高等学校化学学报,201435(11)2397-2402.

28.高抗盐型均一尺度聚合物复合微球调剖剂的研究,石油天然气学报,201436(10)189-195.

29.Modification effect of poly(vinylpyrrolidone) on surface structures of RhPt bimetallic nanocluster catalysts, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2013, 428: 47-52.

30.Reduction of hexavalent chromium with colloidal and supported palladium nanocatalysts, J. Nanopart. Res., 2013, 15: 1593.

31.微波水热合成Zn2GeO4纳米带及其光催化活性,物理化学学报,201329 (9)2062-2068.  

32.磁性聚合物复合微球调剖堵水剂研究,石油与天然气化工,201241(5)504-507.

33.新型孔喉尺度无机-有机聚合物复合微球调剖驱油剂研制,中国海上油气,2011, 23(4)243-246.

34.Synthesis of gold nanoparticles coated with polystyrene-block-poly(N-isopropylacrylamide) and their thermoresponsive ultraviolet-visible absorbance, Ind. Eng. Chem. Res, 2010, 49: 2707-2715.

35.Modification of functionalized mesoporous silica on the formation and the catalytic performance of platinum nanocatalysts, Appl. Surf. Sci., 2009, 255: 7672-7678.

36.Infrared spectra and stability of CO and H2O sorption over Ag-exchanged ZSM-5 zeolite: DFT study, Appl. Surf. Sci., 2009, 255: 5764-5769.

37.Synthesis of magnetic rhenium sulfide composite nanoparticles, J. Mag. Mag. Mat., 2009, 321: 3311.

38.Synthesis of thermoresponsive polymeric micelles of PNIPAAm-b-OMMA as a drug carrier for loading and controlled release of prednisolone, J. Appl. Poly. Sci., 2009, 111(2): 701-708.

39.适于天然气原位转化的催化剂研究,石油与天然气化工,2009, 38(4)284-287.

40.S. Cao, L. Yang, W. Wang, Modification effects of magnetic supports and bimetallic structures on palladium nanocluster catalysts. Chem. Eng. J., 2008, 143:244-248.

41.Study on the interaction between polyvinylpyrrolidone and platinum metals during the formation of the colloidal metal nanoparticles, Chinese J. Poly. Sci., 2008, 26(1): 23-29.

42.Synthesis of small-sized rhenium sulfide colloidal nanoparticles, J. Colloid Interface Sci., 2007, 310: 167.

43.Magnetic and electronic properties of palladium nanoparticles coated with -conjugated tetrathiafulvalence derivative, J. Phys. Chem. B, 2006, 110: 20895-20900.

44.微波法合成纳米金胶体颗粒的调控研究,物理化学学报,200622(4)513-516.

45.Catalytic properties of polymer-stabilized colloidal metal nanoparticles synthesized by microwave irradiation, Chinese J. Poly. Sci., 2005, 23(2): 211-217.

46.Synthesis of polymer-stabilized platinum/ruthenium bimetallic colloids and their catalytic properties for selective hydrogenation of crotonaldehyde, Chinese J. Poly. Sci., 2005, 23(5): 487-495.

47.Interface effect on the electronic structure of alkanethiol-coated platinum nanoparticles, J. Phys. Chem. B, 2003, 107: 10134-10140.

48.Continuous synthesis of colloidal metal nanoclusters by microwave irradiation, Chem. Mater., 2000, 12(2): 564-567.

49.Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation, J. Mater. Chem., 2000, 10(9): 2207-2211.

50.Preparation and catalytic properties of amphiphilic copolymer-stabilized platinum metals colloids, J. Colloid Interface. Sci., 2000, 229(2): 453-461.

51.Metal complex effect on hydrogenation of m-, p-chloronitrobenzene over PVP-stabilized platinum clusters, J. Mol. Catal. A: Chem., 2000, 159(1): 115-120.

52.Immobilization of -galactosidase from Cicer Arietinum (gram chicken bean) and its catalytic actions, Food Chem., 1999, 64, 495-500.


获奖情况:

2023:国际高校英语口语表达能力大赛优秀指导教师奖

2022:北京市大学生化工原理竞赛个人特等奖指导教师、一等奖指导教师

2022:北京市大学生化工原理竞赛个人特等奖指导教师、三等奖指导教师

2021-2022:年度优秀班主任

2021:第十一届“挑战杯”首都大学生课外学术科技作品竞赛“揭榜挂帅”专项赛三等奖

2021:第三届北京市大学生节能节水低碳减排社会实践与科技竞赛三等奖

2021:北京化工大学大学生创新创业训练计划项目奖

2021:北京化工大学第十七届“萌芽杯”学术科技竞赛奖

2002:国家自然科学奖二等奖(排名第四),“高分子稳定纳米金属簇的合成及催化研究”,中华人民共和国国务院

2000:中国科学院自然科学奖一等奖(排名第五),“高分子稳定纳米金属簇的合成及催化研究”,中国科学院

2000:中国科学院优秀博士生宝洁奖

论著专利

发明专利:

一种光辅助模板动态转化制备碳酸氧铋类纳微材料的方法(CN202311173388.0)

一种金属离子辅助及酸、碱性环境中氧化钨纳微材料的制备方法(CN202310381741.8

一种氮化硼纳米颗粒光致发光荧光材料的制备方法(CN202110540217.1

一种多级调控亲水性-疏水性硼碳氮纳米材料的制备方法(CN202210722890.1

一种新型阳离子染料吸附剂Zn(OH)2/β-Co(OH)2的制备方法(CN201910284217.2

一种非金属纳米量子点复合添加剂及其改性高效环保甲醇燃料(ZL201410616080.3

一种高效稳定生物柴油复合燃料(ZL201410616079.0

一种核壳型无机/有机聚合物复合微球调剖驱油剂(CN201010569393.X

一种用于甲烷低温氧化制备甲醇的催化剂及其制备方法与应用(CN200910237793.8

一种纳米级硫化铼胶体颗粒的制备方法(ZL200610065219.5

一种纳米级铂族金属簇的制备方法(CN99125947.5

招生需求

欢迎有志于纳米材料合成与应用的各位同学加入。